×
  • الگوریتم بهینه سازی PSO چند هدفه (MOPSO)

    پديدهPSO، براي اولين بار توسط کندي و ابرهارت در سال 1995 مطرح شد. PSO يک الگوريتم محاسبه اي تکاملي الهام گرفته از طبيعت و براساس تکرار مي‌باشد. منبع الهام اين الگوريتم، رفتار اجتماعي حيوانات، همانند حرکت دسته جمعي پرندگان و ماهي‌ها بود. از اين جهت که PSO نيز با يک ماتريس جمعيت تصادفي اوليه، شروع مي‌شود، شبيه بسیاری دیگر از الگوریتم های تکاملی همچون الگوريتم ژنتيک پيوسته است. برخلاف الگوریتم ژنتیک، PSO هيچ عملگر تکاملي همانند جهش و تزويج ندارد. هر عنصر جمعيت، يک ذره ناميده مي‌شود (که همان معادل کروموزوم درGA) است. در واقع الگوريتم PSO از تعداد مشخصي از ذرات تشکيل مي شود که به طور تصادفي، مقدار اوليه مي¬گيرند. براي هر ذره دو مقدار وضعيت و سرعت، تعريف مي شود که به ترتيب با يک بردار مکان و يک بردار سرعت، مدل مي‌شوند.

    الگوریتم بهینه سازی ازدحام گربه های پیشرفته

    در تکنیک بهینه سازی ازدحام گربه ها، دو رفتار اصلی آنها، با دو زیر مدل بنام حالت ردیابی و جستجو مدل شده است. با روشی از ترکیب این دو حالت به نسبت تعریف شده، الگوریتم بهینه سازی ازدحام گربه ها، عملکرد خوبی را از خود نشان می دهد. در این الگوریتم، همانند بهینه سازی ازدحام ذرات، مکان گربه ها گویای یک پاسخ است و این الگوریتم با استفاده از گربه ها و مدل کردن رفتار آنها به حل مسائل بهینه سازی می پردازد. در بهینه سازی ازدحام گربه ها ابتدا تصمیم گرفته می شود که از چند گربه استفاده شود هر گربه دارای موقعیتی است که دارای M بعد می باشد. در کنار این موقعیت هر گربه دارای یک سرعت برای هر بعد و یک مقدار برازندگی است که نشان دهنده میزان برازندگی آن گربه می باشد. این برازندگی توسط تابع برازش بدست می ید همچنین علاوه بر موارد ذکر شده، هر گربه دارای یک نشانه پرچم نیز می باشد که برای شناسائی اینکه گربه در حالت ردیابی و یا در حالت جستجو است، بکار می رود.

    0